Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Pathol Res Pract ; 254: 155105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218041

RESUMO

INTRODUCTION: Prostatic adenocarcinoma can occasionally display urothelial carcinoma morphology, which prompts immunohistochemistry (IHC) studies to determine its lineage. Typically, prostate cancer is characterized by the lack of cytokeratin (CK) 7, CK20 and high molecular weight keratin (HMWK) expression, as opposed to bladder cancer. METHODS: We report a series of 12 prostatic adenocarcinoma cases with unusual urothelial-like morphology, diagnosed at two academic institutions in Toronto between 2018 and 2023, and analyzed by immunohistochemistry for prostatic, urothelial, and neuroendocrine marker expression. We collected patient age, androgen deprivation therapy (ADT) status, tumour site, histomorphology, Grade group (GG) and results of genetic testing. RESULTS: The median age of the 12 patients included in this case series was 75.5 years (range 41-85). A history of prostatic cancer was noted in 7/12 (58%) patients. Five of nine (56%) patients had elevated serum PSA level at diagnosis. Six of eleven (55%) patients had prior ADT. Tumour sites were prostate (n = 6), bladder (n = 3), liver metastases (n = 2), and lung metastasis (n = 1). GGs of the primary tumours were GG3 (n = 1) and GG5 (n = 8). The observed urothelial-like morphology was diffuse in ten cases, and focal in two cases. CK7 was strong/diffuse in 8/11 tested cases, and focal weak in one case. CK20, HMWK, p63 and GATA3 were patchy/focal/weak/moderate in 3/6, 4/7, 4/8 and 2/9 cases, respectively. Ten (83%) cases were positive for at least one prostatic marker; eight (67%) cases had loss/weak staining of at least one prostatic marker. AR loss was seen in 2/7 (29%) cases. Seven of ten (70%) cases had diffuse/strong expression of at least one neuroendocrine marker. No trend was evident between prior ADT/AR status and any IHC result. Molecular analyses for DNA damage repair (DDR) genes (n = 6) demonstrated one ATM deletion (bladder). In addition, one TMPRSS2:ERG fusion (lung metastasis) was identified. CONCLUSION: This series comprises high-grade and/or metastatic prostatic adenocarcinoma cases with distinctive urothelial-like morphology and frequent aberrant CK7/CK20/HMWK expression. Their histomorphology, highly suggestive of an urothelial origin, represents a diagnostic pitfall that can lead to considerable management repercussions. The fact that a high proportion of the reported cases had loss/weak expression of at least one of the tested prostatic-specific markers, and occasionally a diffuse positivity for neuroendocrine markers highlights the importance of (1) clinical history and (2) utilization of broad IHC panels to correctly diagnose such unusual prostate cancer cases.


Assuntos
Adenocarcinoma , Carcinoma de Células de Transição , Neoplasias Pulmonares , Neoplasias da Próstata , Neoplasias da Bexiga Urinária , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Próstata/patologia , Carcinoma de Células de Transição/secundário , Neoplasias da Bexiga Urinária/patologia , Cininogênio de Alto Peso Molecular , Queratinas , Antagonistas de Androgênios , Peso Molecular , Biomarcadores Tumorais/análise , Adenocarcinoma/patologia
2.
J Thromb Haemost ; 22(1): 225-237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37813198

RESUMO

BACKGROUND: In plasma, high molecular weight kininogen (HK) is either free or bound to prekallikrein (PK) or factor (F) XI (FXI). During contact activation, HK is thought to anchor PK and FXI to surfaces, facilitating their conversion to the proteases plasma kallikrein and FXIa. Mice lacking HK have normal hemostasis but are resistant to injury-induced arterial thrombosis. OBJECTIVES: To identify amino acids on the HK-D6 domain involved in PK and FXI binding and study the importance of the HK-PK and HK-FXI interactions to coagulation. METHODS: Twenty-four HK variants with alanine replacements spanning residues 542-613 were tested in PK/FXI binding and activated partial thromboplastin time clotting assays. Surface-induced FXI and PK activation in plasma were studied in the presence or absence of HK. Kng1-/- mice lacking HK were supplemented with human or murine HK and tested in an arterial thrombosis model. RESULTS: Overlapping binding sites for PK and FXI were identified in the HK-D6 domain. HK variants with defects only in FXI binding corrected the activated partial thromboplastin time of HK-deficient plasma poorly compared to a variant defective only in PK-binding. In plasma, HK deficiency appeared to have a greater deleterious effect on FXI activation than PK activation. Human HK corrected the defect in arterial thrombus formation in HK-deficient mice poorly due to a specific defect in binding to mouse FXI. CONCLUSION: Clinical observations indicate FXI is required for hemostasis, while HK is not. Yet, the HK-FXI interaction is required for contact activation-induced clotting in vitro and in vivo suggesting an important role in thrombosis and perhaps other FXI-related activities.


Assuntos
Cininogênio de Alto Peso Molecular , Trombose , Animais , Humanos , Camundongos , Cininogênio de Alto Peso Molecular/metabolismo , Fator XI/metabolismo , Pré-Calicreína/metabolismo , Coagulação Sanguínea
3.
J Allergy Clin Immunol ; 152(4): 961-971.e7, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399947

RESUMO

BACKGROUND: We examined how prekallikrein (PK) activation on human microvascular endothelial cells (HMVECs) is regulated by the ambient concentration of C1 inhibitor (C1INH) and prolylcarboxypeptidase (PRCP). OBJECTIVE: We sought to examine the specificity of PK activation on HMVECs by PRCP and the role of C1INH to regulate it, high-molecular-weight kininogen (HK) cleavage, and bradykinin (BK) liberation. METHODS: Investigations were performed on cultured HMVECs. Immunofluorescence, enzymatic activity assays, immunoblots, small interfering RNA knockdowns, and cell transfections were used to perform these studies. RESULTS: Cultured HMVECs constitutively coexpressed PK, HK, C1INH, and PRCP. PK activation on HMVECs was modulated by the ambient C1INH concentration. In the absence of C1INH, forming PKa on HMVECs cleaved 120-kDa HK completely to a 65-kDa H-chain and a 46-kDa L-chain in 60 minutes. In the presence of 2 µM C1INH, only 50% of the HK became cleaved. C1INH concentrations (0.0-2.5 µM) decreased but did not abolish BK liberated from HK by activated PK. Factor XII did not activate when incubated with HMVECs alone for 1 hour. However, if incubated in the presence of HK and PK, factor XII became activated. The specificity of PK activation on HMVECs by PRCP was shown by several inhibitors to each enzyme. Furthermore, PRCP small interfering RNA knockdowns magnified C1INH inhibitory activity on PK activation, and PRCP transfections reduced C1INH inhibition at any given concentration. CONCLUSIONS: These combined studies indicated that on HMVECs, PK activation and HK cleavage to liberate BK were modulated by the local concentrations of C1INH and PRCP.


Assuntos
Fator XII , Pré-Calicreína , Humanos , Células Endoteliais , Bradicinina/farmacologia , Cininogênio de Alto Peso Molecular , RNA Interferente Pequeno/genética
4.
Allergol Int ; 72(3): 375-384, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169642

RESUMO

Hereditary angioedema (HAE) is a rare disorder characterized by cutaneous and submucosal swelling caused mostly by excessive local bradykinin production. Bradykinin is a vasoactive peptide generated by the limited proteolysis of high molecular weight kininogen (HMWK) by plasma kallikrein via the contact activation system. The contact activation system occurs not only in solution but also on the cell surface. Factor XII (FXII), prekallikrein, and HMWK are assembled on the endothelial cell surface via several proteins, including a trimer of a receptor for globular C1q domain in a Zn2+-dependent manner, and the reciprocal activation on the cell surface is believed to be physiologically important in vivo. Thus, the contact activation system leads to the activation of coagulation, complement, inflammation, and fibrinolysis. C1-inhibitor (C1-INH) is a plasma protease inhibitor that is a member of the serpin family. It mainly inhibits activated FXII (FXIIa), plasma kallikrein, and C1s. C1-INH hereditary deficiency induces HAE (HAE-C1-INH) due to excessive bradykinin production via the incomplete inhibition of plasma kallikrein and FXIIa through the low C1-INH level. HAE is also observed in patients with normal C1-INH (HAEnCI) who carry pathogenic variants in genes of factor XII, plasminogen, angiopoietin 1, kininogen, myoferlin, and heparan sulfate 3-O-sulfotransferase 6, which are associated with bradykinin production and/or vascular permeability. HAE-causing pathways triggered by pathogenic variants in patients with HAE-C1-INH and HAEnCI are reviewed and discussed.


Assuntos
Angioedemas Hereditários , Humanos , Angioedemas Hereditários/diagnóstico , Angioedemas Hereditários/genética , Fator XII/genética , Fator XII/metabolismo , Bradicinina , Calicreína Plasmática , Cininogênio de Alto Peso Molecular/metabolismo , Proteína Inibidora do Complemento C1/genética , Biologia Molecular
5.
J Thromb Haemost ; 21(9): 2378-2389, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37068593

RESUMO

BACKGROUND: High-molecular weight kininogen (HK) circulates in plasma as a complex with zymogen prekallikrein (PK). HK is both a substrate and a cofactor for activated plasma kallikrein, and the principal exosite interactions occur between PK N-terminal apple domains and the C-terminal D6 domain of HK. OBJECTIVES: To determine the structure of the complex formed between PK apple domains and an HKD6 fragment and compare this with the coagulation factor XI (FXI)-HK complex. METHODS: We produced recombinant FXI and PK heavy chains (HCs) spanning all 4 apple domains. We cocrystallized PKHC (and subsequently FXIHC) with a 31-amino acid synthetic peptide spanning HK residues Ser565-Lys595 and determined the crystal structure. We also analyzed the full-length FXI-HK complex in solution using hydrogen deuterium exchange mass spectrometry. RESULTS: The 2.3Å PKHC-HK peptide crystal structure revealed that the HKD6 sequence WIPDIQ (Trp569-Gln574) binds to the apple 1 domain and HK FNPISDFPDT (Phe582-Thr591) binds to the apple 2 domain with a flexible intervening sequence resulting in a bent double conformation. A second 3.2Å FXIHC-HK peptide crystal structure revealed a similar interaction with the apple 2 domain but an alternate, straightened conformation of the HK peptide where residues LSFN (Leu579-Asn583) interacts with a unique pocket formed between the apple 2 and 3 domains. HDX-MS of full length FXI-HK complex in solution confirmed interactions with both apple 2 and apple 3. CONCLUSIONS: The alternate conformations and exosite binding of the HKD6 peptide likely reflects the diverging relationship of HK to the functions of PK and FXI.


Assuntos
Fator XI , Cininogênio de Alto Peso Molecular , Humanos , Cininogênio de Alto Peso Molecular/metabolismo , Fator XI/metabolismo , Pré-Calicreína/metabolismo , Peso Molecular , Sítios de Ligação , Cininogênios/química , Peptídeos/química
6.
J Thromb Haemost ; 21(4): 814-827, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36990522

RESUMO

BACKGROUND: Human serum albumin (HSA) is the most abundant plasma protein and is sensitive to glycation in vivo. The chronic hyperglycemic conditions in patients with diabetes mellitus (DM) induce a nonenzymatic Maillard reaction that denatures plasma proteins and forms advanced glycation end products (AGEs). HSA-AGE is a prevalent misfolded protein in patients with DM and is associated with factor XII activation and downstream proinflammatory kallikrein-kinin system activity without any associated procoagulant activity of the intrinsic pathway. OBJECTIVES: This study aimed to determine the relevance of HSA-AGE toward diabetic pathophysiology. METHODS: The plasma obtained from patients with DM and euglycemic volunteers was probed for activation of FXII, prekallikrein (PK), and cleaved high-molecular-weight kininogen by immunoblotting. Constitutive plasma kallikrein activity was determined via chromogenic assay. Activation and kinetic modulation of FXII, PK, FXI, FIX, and FX via in vitro-generated HSA-AGE were explored using chromogenic assays, plasma-clotting assays, and an in vitro flow model using whole blood. RESULTS: Plasma obtained from patients with DM contained increased plasma AGEs, activated FXIIa, and resultant cleaved cleaved high-molecular-weight kininogen. Elevated constitutive plasma kallikrein enzymatic activity was identified, which positively correlated with glycated hemoglobin levels, representing the first evidence of this phenomenon. HSA-AGE, generated in vitro, triggered FXIIa-dependent PK activation but limited the intrinsic coagulation pathway activation by inhibiting FXIa and FIXa-dependent FX activation in plasma. CONCLUSION: These data indicate a proinflammatory role of HSA-AGEs in the pathophysiology of DM via FXII and kallikrein-kinin system activation. A procoagulant effect of FXII activation was lost through the inhibition of FXIa and FIXa-dependent FX activation by HSA-AGEs.


Assuntos
Calicreínas , Calicreína Plasmática , Humanos , Calicreínas/metabolismo , Calicreína Plasmática/metabolismo , Cininas , Fator XIIa/metabolismo , Cininogênio de Alto Peso Molecular/metabolismo , Pré-Calicreína/metabolismo , Albuminas , Produtos Finais de Glicação Avançada
7.
J Thromb Haemost ; 21(2): 237-254, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36700498

RESUMO

BACKGROUND: Severe high-molecular-weight kininogen (HK) deficiency is a poorly studied autosomal recessive contact system defect caused by pathogenic, biallelic KNG1 variants. AIM: We performed the first comprehensive analysis of diagnostic, clinical, genetic, and epidemiological aspects of HK deficiency. METHODS: We collected clinical information and blood samples from a newly detected HK-deficient individual and from published cases identified by a systematic literature review. Activity and antigen levels of coagulation factors were determined. Genetic analyses of KNG1 and KLKB1 were performed by Sanger sequencing. The frequency of HK deficiency was estimated considering truncating KNG1 variants from GnomAD. RESULTS: We identified 48 cases of severe HK deficiency (41 families), of these 47 have been previously published (n = 19 from gray literature). We genotyped 3 cases and critically appraised 10 studies with genetic data. Ten HK deficiency-causing variants (one new) were identified. All of them were truncating mutations, whereas the only known HK amino acid substitution with a relevant phenotype instead causes hereditary angioedema. Conservative estimates suggest an overall prevalence of severe HK deficiency of approximately one case per 8 million population, slightly higher in Africans. Individuals with HK deficiency appeared asymptomatic and had decreased levels of prekallikrein and factor XI, which could lead to misdiagnosis. CONCLUSION: HK deficiency is a rare condition with only few known pathogenic variants. It has an apparently good prognosis but is prone to misdiagnosis. Our understanding of its clinical implications is still limited, and an international prekallikrein and HK deficiency registry is being established to fill this knowledge gap.


Assuntos
Cininogênio de Alto Peso Molecular , Pré-Calicreína , Cininogênio de Alto Peso Molecular/genética , Cininogênio de Alto Peso Molecular/metabolismo , Pré-Calicreína/genética , Pré-Calicreína/metabolismo , Prevalência , Fatores de Coagulação Sanguínea
8.
Blood Adv ; 7(7): 1156-1167, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36409609

RESUMO

A dysregulated plasma contact system is involved in various pathological conditions, such as hereditary angioedema, Alzheimer disease, and sepsis. We previously showed that the 3E8 anti-high molecular weight kininogen (anti-HK) antibody blocks HK cleavage and bradykinin generation in human plasma ex vivo. Here, we show that 3E8 prevented not only HK cleavage but also factor XI (FXI) and prekallikrein (PK) activation by blocking their binding to HK in mouse plasma in vivo. 3E8 also inhibited contact system-induced bradykinin generation in vivo. Interestingly, FXII activation was also inhibited, likely because of the ability of 3E8 to block the positive feedback activation of FXII by kallikrein (PKa). In human plasma, 3E8 also blocked PK and FXI binding to HK and inhibited both thrombotic (FXI activation) and inflammatory pathways (PK activation and HK cleavage) of the plasma contact system activation ex vivo. Moreover, 3E8 blocked PKa binding to HK and dose-dependently inhibited PKa cleavage of HK. Our results reveal a novel strategy to inhibit contact system activation in vivo, which may provide an effective method to treat human diseases involving contact system dysregulation.


Assuntos
Pré-Calicreína , Trombose , Humanos , Animais , Camundongos , Pré-Calicreína/química , Pré-Calicreína/metabolismo , Fator XI/metabolismo , Bradicinina/farmacologia , Bradicinina/química , Cininogênio de Alto Peso Molecular/química , Cininogênio de Alto Peso Molecular/metabolismo
9.
10.
Biosci Rep ; 42(10)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36156118

RESUMO

Human kallikrein-kinin system (KKS) is a proteolytic cascade with two serine-protease zymogen couples (Factor XII and prekallikrein (PK) and their activated forms, FXIIa, PKa, respectively), releasing bradykinin by cleavage of native high-molecular-weight kininogen (nHK) into cleaved HK. For KKS investigation in human plasma, this cascade is usually triggered on ice eventually by mixing with purified proteins. It has been established that purified FXIIa, PK, and nHK required a fixed order and timing for mixing protein on ice to ensure reproducibility of testing, we investigated the activation kinetics of both enzymes. The activation process of this in vitro minimal reconstitution of KKS was studied by progress curve analysis, in condition of high enzyme/substrate ratio and by using on natural rather than peptide substrates. FXIIa and PKa were found five-times less active on ice than at 37°C: kcat = 0.133 ± 0.034 and 0.0119 ± 0.0027 s-1, KM = 672 ± 150 and 115 ± 24 nM, respectively. The progress curve analysis of our in vitro KKS reconstitutions differed from a Michaelis-Menten mathematical simulation by a faster initial rate and a slower late rate. These two features were also observed ex vivo by using dextran sulfate-activated plasma and could reinforce the hypothesis of a maximal local effect (bradykinin release) and a minimal systemic consequence (PK preservation) in KKS activation process. Analyzing the complete curve of cold KKS activation would provide valuable information for ex vivo investigation of KKS in samples from patients presenting with hereditary angioedema and other inflammatory conditions.


Assuntos
Sistema Calicreína-Cinina , Cininogênio de Alto Peso Molecular , Humanos , Cininogênio de Alto Peso Molecular/metabolismo , Pré-Calicreína/metabolismo , Fator XII/metabolismo , Bradicinina/metabolismo , Sulfato de Dextrana , Gelo , Reprodutibilidade dos Testes , Precursores Enzimáticos/metabolismo , Serina/metabolismo
11.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142215

RESUMO

The initiation, maintenance and regulation of blood coagulation is inexorably linked to the actions of Zn2+ in blood plasma. Zn2+ interacts with a variety of haemostatic proteins in the bloodstream including fibrinogen, histidine-rich glycoprotein (HRG) and high molecular weight kininogen (HMWK) to regulate haemostasis. The availability of Zn2+ to bind such proteins is controlled by human serum albumin (HSA), which binds 70-85% of plasma Zn2+ under basal conditions. HSA also binds and transports non-esterified fatty acids (NEFAs). Upon NEFA binding, there is a change in the structure of HSA which leads to a reduction in its affinity for Zn2+. This enables other plasma proteins to better compete for binding of Zn2+. In diseases where elevated plasma NEFA concentrations are a feature, such as obesity and diabetes, there is a concurrent increase in hypercoagulability. Evidence indicates that NEFA-induced perturbation of Zn2+-binding by HSA may contribute to the thrombotic complications frequently observed in these pathophysiological conditions. This review highlights potential interventions, both pharmaceutical and non-pharmaceutical that may be employed to combat this dysregulation. Lifestyle and dietary changes have been shown to reduce plasma NEFA concentrations. Furthermore, drugs that influence NEFA levels such as statins and fibrates may be useful in this context. In severely obese patients, more invasive therapies such as bariatric surgery may be useful. Finally, other potential treatments such as chelation therapies, use of cholesteryl transfer protein (CETP) inhibitors, lipase inhibitors, fatty acid inhibitors and other treatments are highlighted, which with additional research and appropriate clinical trials, could prove useful in the treatment and management of thrombotic disease through amelioration of plasma Zn2+ dysregulation in high-risk individuals.


Assuntos
Hemostáticos , Inibidores de Hidroximetilglutaril-CoA Redutases , Trombose , Ácidos Graxos , Ácidos Graxos não Esterificados , Ácidos Fíbricos , Fibrinogênio , Humanos , Cininogênio de Alto Peso Molecular , Lipase , Plasma/metabolismo , Albumina Sérica/metabolismo , Albumina Sérica Humana , Zinco/química
12.
Front Immunol ; 13: 887742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865516

RESUMO

The protein gC1qR/C1qBP/HABP-1 plays an essential role in mitochondrial biogenesis, but becomes localized at the cellular surface in numerous pathophysiological states. When this occurs on endothelial cells, surface-exposed gC1qR activates the classical pathway of complement. It also promotes assembly of a multi-protein complex comprised of coagulation factor XII (FXII), pre-kallikrein (PK), and high-molecular weight kininogen (HMWK) that activates the contact system and the kinin-generating system. Since surface-exposed gC1qR triggers intravascular inflammatory pathways, there is interest in identifying molecules that block gC1qR function. Here we further that objective by reporting the outcome of a structure/function investigation of gC1qR, its interactions with FXII, and the impact of a panel of monoclonal anti-gC1qR antibodies on FXII binding to gC1qR. Although deletion mutants have been used extensively to assess gC1qR function, none of these proteins have been characterized structurally. To that end, we determined a 2.2 Å resolution crystal structure of a gC1qR mutant lacking both of its acidic loops, but which retained nanomolar-affinity binding to FXII and FXIIa. This structure revealed that the trimeric gC1qR assembly was maintained despite loss of roughly thirty residues. Characterization of a novel panel of anti-gC1qR monoclonal antibodies identified several with biochemical properties distinct from previously described antibodies, as well as one which bound to the first acidic loop of gC1qR. Intriguingly, we found that each of these antibodies could partly inhibit binding of FXII and FXIIa to gC1qR. Based on these results and previously published studies, we offer new perspectives for developing gC1qR inhibitors.


Assuntos
Anticorpos Monoclonais , Fator XII , Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Fator XII/genética , Fator XII/metabolismo , Cininogênio de Alto Peso Molecular/metabolismo
13.
J Thromb Haemost ; 20(11): 2538-2549, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35815349

RESUMO

BACKGROUND: Factor XI (FXI) is a promising target for novel anticoagulants because it shows a strong relation to thromboembolic diseases, while fulfilling a mostly supportive role in hemostasis. Anticoagulants targeting FXI could therefore reduce the risk for thrombosis, without increasing the chance of bleeding side effects. OBJECTIVES: To generate nanobodies that can interfere with FXIa mediated activation of factor IX (FIX). METHODS: Nanobodies were selected for binding to the apple 3 domain of FXI and their effects on FXI and coagulation were measured in purified protein systems as well as in plasma-based coagulation assays. Additionally, the binding epitope of selected nanobodies was assessed by hydrogen-deuterium exchange mass spectrometry. RESULTS: We have identified five nanobodies that inhibit FIX activation by FXI by competing with the FIX binding site on FXI. Interestingly, a sixth nanobody was found to target a different binding epitope in the apple 3 domain, resulting in competition with the FXI-high molecular weight kininogen (HK) interaction. CONCLUSIONS: We have characterized a nanobody targeting the FXI apple 3 domain that elucidates the binding orientation of HK on FXI. Moreover, we have produced five nanobodies that can inhibit the FXI-FIX interaction.


Assuntos
Fator IX , Fator XI , Cininogênio de Alto Peso Molecular , Anticorpos de Domínio Único , Humanos , Anticoagulantes , Sítios de Ligação , Deutério , Epitopos , Fator IX/metabolismo , Fator XI/metabolismo , Cininogênio de Alto Peso Molecular/metabolismo
14.
Blood Adv ; 6(10): 3090-3101, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35147669

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder and the leading cause of dementia. Vascular abnormalities and neuroinflammation play roles in AD pathogenesis. Plasma contact activation, which leads to fibrin clot formation and bradykinin release, is elevated in many AD patients, likely due to the ability of AD's pathogenic peptide ß-amyloid (Aß) to induce its activation. Since overactivation of this system may be deleterious to AD patients, the development of inhibitors could be beneficial. Here, we show that 3E8, an antibody against a 20-amino acid region in domain 6 of high molecular weight kininogen (HK), inhibits Aß-induced intrinsic coagulation. Mechanistically, 3E8 inhibits contact system activation by blocking the binding of prekallikrein (PK) and factor XI (FXI) to HK, thereby preventing their activation and the continued activation of factor XII (FXII). The 3E8 antibody can also disassemble HK/PK and HK/FXI complexes in normal human plasma in the absence of a contact system activator due to its strong binding affinity for HK, indicating its prophylactic ability. Furthermore, the binding of Aß to both FXII and HK is critical for Aß-mediated contact system activation. These results suggest that a 20-amino acid region in domain 6 of HK plays a critical role in Aß-induced contact system activation, and this region may provide an effective strategy to inhibit or prevent contact system activation in related disorders.


Assuntos
Doença de Alzheimer , Cininogênio de Alto Peso Molecular , Aminoácidos , Anticorpos , Fator XI/metabolismo , Fator XII , Humanos , Cininogênio de Alto Peso Molecular/metabolismo , Pré-Calicreína/metabolismo
15.
Alzheimers Dement ; 18(10): 1919-1929, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34978145

RESUMO

Increased activation of the contact system protein high molecular weight kininogen (HK) has been shown in plasma and cerebrospinal fluid of Alzheimer's disease (AD) patients, but its potential role in the brain has not been explored. We assessed HK levels in brain tissue from 20 AD patients and controls and modeled the effects of HK on microglia-like cells in culture. We show increased levels of HK in the hippocampus of AD patients, which colocalized with amyloid beta (Aß) deposits and activated microglia. Treatment of microglia with HK led to cell clustering and elevated levels of phagocytosed Aß. We demonstrate that microglia internalize HK and traffic it to lysosomes, which is accompanied by reduced activity of lysosomal cathepsins L and S. Our results suggest that HK accumulation in the AD hippocampus may alter microglial uptake and degradation of Aß fibrils, possibly contributing to microglial dysfunction in AD.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Catepsinas/metabolismo , Catepsinas/farmacologia , Cininogênio de Alto Peso Molecular/metabolismo , Cininogênio de Alto Peso Molecular/farmacologia , Lisossomos/metabolismo , Microglia/metabolismo , Fagocitose
16.
Mol Immunol ; 142: 95-104, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973499

RESUMO

BACKGROUND: Excessive bradykinin (BK) generation from high molecular weight kininogen (HK) by plasma kallikrein (PK) due to lack of protease inhibition is central to the pathophysiology of hereditary angioedema (HAE). Inadequate protease inhibition may contribute to HAE through a number of plasma proteases including factor VII activating protease (FSAP) that can also cleave HK. OBJECTIVE: To investigate the interaction between FSAP and C1 inhibitor (C1Inh) and evaluate the potential role of FSAP in HAE with C1Inh deficiency. MATERIALS AND METHODS: Plasma samples from 20 persons with HAE types 1 or 2 in remission were studied and compared to healthy controls. We measured and compared antigenic FSAP levels, spontaneous FSAP activity, FSAP generation potential, activation of plasma pre-kallikrein (PPK) by FSAP, and the formation of FSAP-C1Inh and FSAP-alpha2-antiplasmin (FSAP-α2AP) complexes. Furthermore, we measured HK cleavage and PK activation after activation of endogenous pro-FSAP and after addition of exogenous FSAP. RESULTS: In plasma from HAE patients, there is increased basal FSAP activity compared to healthy volunteers. HAE plasma exhibits decreased formation of FSAP-C1Inh complexes and increased formation of FSAP-α2AP complexes in histone-activated plasma. Although exogenous FSAP can cleave HK in plasma, this was not seen when endogenous plasma pro-FSAP was activated with histones in either group. PK was also not activated by FSAP in plasma. CONCLUSION: In this study, we established that FSAP activity is increased and the pattern of FSAP-inhibitor complexes is altered in HAE patients. However, we did not find evidence suggesting that FSAP contributes directly to HAE attacks.


Assuntos
Angioedemas Hereditários/fisiopatologia , Proteína Inibidora do Complemento C1/genética , Cininogênio de Alto Peso Molecular/metabolismo , Serina Endopeptidases/metabolismo , Angioedemas Hereditários/sangue , Angioedemas Hereditários/genética , Antifibrinolíticos/metabolismo , Bradicinina/biossíntese , Fator VII/metabolismo , Humanos , Calicreínas/sangue , Calicreínas/metabolismo , Serina Endopeptidases/genética
17.
J Thromb Thrombolysis ; 54(1): 11-14, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34993714

RESUMO

The contact system activation can play a role in microthrombus formation of disseminated intravascular coagulation (DIC). This study investigated whether the activity of prekallikrein and high-molecular-weight kininogen (HMWK) correlated DIC progression. Contact system factors (prekallikrein, HMWK, activated factor XII), coagulation factors (IX, XI, XII) and tissue factor were measured in 140 patients who clinically suspected of having DIC. Prekallikrein and HMWK activity levels showed significant linear relationships with DIC score and antithrombin level, whereas prekallikrein and HMWK antigen levels did not. The activated factor XII, factor XII, factor XI and tissue factor were significant risk factors of overt-DIC. This finding suggests that consumption of prekallikrein and HMWK contributes to microvascular thrombosis in DIC. Measurements of prekallikrein and HMWK activity could be used as potential diagnostic markers for overt-DIC.


Assuntos
Coagulação Intravascular Disseminada , Trombose , Coagulação Intravascular Disseminada/diagnóstico , Fator XIIa , Humanos , Cininogênio de Alto Peso Molecular , Cininogênios/fisiologia , Pré-Calicreína , Fatores de Risco , Tromboplastina
18.
J Allergy Clin Immunol ; 149(6): 2034-2042, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35086692

RESUMO

BACKGROUND: Attacks of hereditary angioedema are attributed to excessive plasma kallikrein (PKa) activity, which cleaves high-molecular-weight kininogen to generate the proinflammatory hormone bradykinin. OBJECTIVE: We evaluated the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of KVD900, an orally administered inhibitor of PKa in healthy adults. METHODS: KVD900 was administered in 2 clinical studies. In the first study, healthy adult men received single ascending doses (5-600 mg) of KVD900 capsule or placebo, single 100 mg doses of KVD900 tablet and KVD900 capsule (crossover), and single 600 mg doses of KVD900 (6 × 100 mg tablets) under fed and fasting conditions (crossover). In a second study, 3 cohorts of healthy adults were provided 600 mg of KVD900 tablets at 8-, 4-, and 2-hour intervals. RESULTS: Overall, 98 healthy participants received KVD900. All adverse events (AEs) were mild, except for a single moderate AE (headache). Exposure to KVD900 was proportional to dose. The PK parameters for KVD900 600 mg in tablet form under fasted conditions were mean (coefficient of variation) maximum plasma concentration of 6460 (22.0) ng/mL, mean (coefficient of variation) area under the curve (AUC0-24) of 18,600 (22.5) h⋅ng/mL, and median (range) time to maximum plasma concentration of 0.5 (0.33-1.5) hours. Mean PKa inhibition was essentially complete (>98%) between 20 minutes and 3 hours, and >90% inhibition was maintained for at least 8 hours after dosing. High-molecular-weight kininogen cleavage protection at the 600 mg dose was attained within 20 minutes and maintained for 8 to 10 hours. CONCLUSION: These phase 1 studies evaluated the PK/PD profile of KVD900, showing that KVD900 rapidly achieves near-complete PKa inhibition and is generally safe and well tolerated. GOV IDENTIFIER: NCT04349800.


Assuntos
Angioedemas Hereditários , Administração Oral , Adulto , Angioedemas Hereditários/tratamento farmacológico , Área Sob a Curva , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Cininogênio de Alto Peso Molecular , Masculino , Comprimidos
19.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948166

RESUMO

Kininogens are multidomain glycoproteins found in the blood of most vertebrates. High molecular weight kininogen demonstrate both carrier and co-factor activity as part of the intrinsic pathway of coagulation, leading to thrombin generation. Kininogens are the source of the vasoactive nonapeptide bradykinin. To date, attempts to crystallize kininogen have failed, and very little is known about the shape of kininogen at an atomic level. New advancements in the field of cryo-electron microscopy (cryoEM) have enabled researchers to crack the structure of proteins that has been refractory to traditional crystallography techniques. High molecular weight kininogen is a good candidate for structural investigation by cryoEM. The goal of this review is to summarize the findings of kininogen structural studies.


Assuntos
Cininogênio de Alto Peso Molecular/genética , Cininogênio de Alto Peso Molecular/metabolismo , Cininogênio de Alto Peso Molecular/fisiologia , Animais , Bradicinina/metabolismo , Microscopia Crioeletrônica/métodos , Humanos , Calicreínas/sangue , Cininogênios/genética , Cininogênios/metabolismo , Cininogênios/fisiologia , Relação Estrutura-Atividade
20.
Int Immunopharmacol ; 101(Pt A): 108269, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34688137

RESUMO

Activated-mast cells (MCs) within gingival-tissue of chronic-periodontitis (CP) patients, release various inflammatory-factors. Bradykinin is a nine-amino-acid peptide and pro-inflammatory mediator, produced through factor-XII-cascade or tryptase-cascade. The ability of MC-chymase in bradykinin generation has not been discussed yet. This study investigated the salivary levels of MC-chymase, high molecular weight kininogen (HMWK) and bradykinin of CP patients; examined the potential of MC-proteases in bradykinin production using biochemistry-models; and explored the effects of bradykinin on gingival fibroblasts (GFs). Saliva-samples were collected; MC-protease activities were detected; HMWK cleavage was assessed by western-blot and SDS-PAGE; bradykinin levels were measured using immunoassay. Primary GFs were extracted and cultured with or without bradykinin; cell-viability, gelatine-zymography and flow-cytometry were applied. Immunocytochemistry and western-blot were used to detect intracellular protein expressions of bradykinin-stimulated GFs. The data showed that the salivary-levels of MC-proteases, bradykinin, HMWK, and lactoferrin of CP-patients were increased. HMWK was cleaved by MC-chymase in-vitro, resulting in bradykinin generation. Bradykinin promoted cell proliferation, cell cycle and matrix-metalloproteinase-2(MMP-2) activity, and increased intracellular expressions of nuclear-factor-kappa-B(NF-κB), focal-adhesion-kinase(FAK), transforming-growth-factor-ß(TGF-ß), P38, P53 of GFs. MC-chymase promotes bradykinin production to stimulate GFs and to continue inflammation during CP development. A new BK-generation cascade found in this study provides a new basis for the pathogenesis of CP and the mechanism of continuous inflammation. The activation of MC-chymase/bradykinin-generation cascade depends on HMWK level and MC-chymase activity under inflammatory condition. MC-chymase contributes to bradykinin production, mediating the cross-talks between MCs and GFs. MC-chymase can be used as a therapeutic target and a salivary biomarker in this case.


Assuntos
Bradicinina/biossíntese , Periodontite Crônica/imunologia , Quimases/metabolismo , Saliva/química , Adulto , Estudos de Casos e Controles , Comunicação Celular/imunologia , Ciclo Celular/imunologia , Proliferação de Células , Periodontite Crônica/patologia , Quimases/análise , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Gengiva/citologia , Gengiva/imunologia , Gengiva/patologia , Voluntários Saudáveis , Humanos , Cininogênio de Alto Peso Molecular/análise , Lactoferrina/análise , Masculino , Mastócitos/enzimologia , Mastócitos/imunologia , Pessoa de Meia-Idade , Saliva/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...